自考高数不是很难。但如果你是学文科的就会觉得很难。高等数学需要高中的代数和几何知识基础比较好,学起来就不难了。诀窍就是多做题,多练习。
1.已知函数f(x)=(x-1)(x-2)(x-3)(x-4),则方程f’(x)=0有
A.三个根,分别位于区间(1,2)、(2,3)、(3,4)内
B.四个根,分别为x_1=1,x_2=2,x_3=3,x_4=4
C.四个根,分别位于区间内(1,2)、(2,3)、(3,4)
D.三个根,分别位于区间(1,2)、(1,3)、(1,4)内
2.过曲线y=(x+4)/(4-x)上一点(2,3)的切线斜率为
A.-2
B.2
C.-1
D.1
3.若f’(1)=3,则lim_(h->0)(f(1)-f(1-2h))/h=
A.3
B.-3
C.6
D.-6
4.下列广义积分中,发散的是()
A.int_1^(+oo)xe^(-x)dx
B.int_e^(+oo)(dx)/(xlnx)
C.int_1^(+oo)x^(2)e^(-x)dx
D.int_e^(+oo)(dx)/(xln^(2)x)
5.设f(x+1)=x^2-3x+2,则f(x)=
A.x^2-6x+5
B.x^2-5x+6
C.x^2-5x+2
D.x^2-x
(一)不定积分
1.知识范围
(1)不定积分
原函数与不定积分的定义 原函数存在定理 不定积分的性质
(2)基本积分公式
(3)换元积分法
第一换元法(凑微分法) 第二换元法
(4)分部积分法
(5)一些简单有理函数的积分
2.要求
(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。
(2)熟练掌握不定积分的基本公式。
(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。
(4)熟练掌握不定积分的分部积分法。
(5)会求简单有理函数的不定积分。
(二)定积分
1.知识范围
(1)定积分的概念
定积分的定义及其几何意义 可积条件
(2)定积分的性质
(3)定积分的计算
变上限积分 牛顿—莱布尼茨(Newton-Leibniz)公式 换元积分法 分部积分法
(4)无穷区间的广义积分
(5)定积分的应用
平面图形的面积 旋转体体积 物体沿直线运动时变力所作的功
2.要求
(1)理解定积分的概念及其几何意义,了解函数可积的条件。
(2)掌握定积分的基本性质。
(3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。
(4)熟练掌握牛顿—莱布尼茨公式。
(5)掌握定积分的换元积分法与分部积分法。
(6)理解无穷区间的广义积分的概念,掌握其计算方法。
(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。
会用定积分求沿直线运动时变力所作的功。